Rabu, 23 Januari 2019

Metode Newton

NAMA   : LM. RESKY JULIYANTO. S
NPM      : 15 630 040

Metode Newton

Dalam analisis numerik, metode Newton (juga dikenal sebagai metode Newton-Raphson), yang mendapat nama dari Isaac Newton dan Joseph Raphson, merupakan metode yang paling dikenal untuk mencari hampiran terhadap akar fungsi riil.

Metode Newton sering konvergen dengan cepat, terutama bila iterasi dimulai "cukup dekat" dengan akar yang diinginkan. Namun bila iterasi dimulai jauh dari akar yang dicari, metode ini dapat meleset tanpa peringatan. Implementasi metode ini biasanya mendeteksi dan mengatasi kegagalan konvergensi.  

 Diketahui fungsi ƒ(x) dan turunannya ƒ '(x), kita memulai dengan tebakan pertama, x 0 . Hampiran yang lebih baik x 1 adalah







Contoh :

Tentukan akar dari persamaan 4x3 – 15x2 + 17x – 6 = 0 menggunakan Metode Newton Raphson. Penyelesaian :

f(x) = 4x3 – 15x2 + 17x – 6
f’(x) = 12x2 – 30x + 17

iterasi 1 :
ambil titik awal x0 = 3

f(3) = 4(3)3 – 15(3)2 + 17(3) – 6 = 18
f’(3) = 12(3)2 – 30(3) + 17 = 35
x1 = 3 – 18/35 = 2.48571

iterasi 2 :
f(2.48571) = 4(2.48571)3 – 15(2.48571)2 + 17(2.48571) – 6 = 5.01019
f’(2.48571) = 12(2.48571)2 – 30(2.48571) + 17 = 16.57388
x2 = 2.48571 – 5.01019/16.57388  = 2.18342
iterasi 3 :
f(2.18342) = 4(2.18342)3 – 15(2.18342)2 + 17(2.18342) – 6 = 1.24457
f’(2.18342) = 12(2.18342)2 – 30(2.18342) + 17 = 8.70527
x3 = 2.18342 – 1.24457/8.70527 = 2.04045
iterasi 4 :
f(2.04045) = 4(2.04045)3 – 15(2.04045)2 + 17(2.04045) – 6 = 0.21726
f’(2.04045) = 12(2.04045)2 – 30(2.04045) + 17 = 5.74778
x4 = 2.04045 – 0.21726/5.74778  = 2.00265
iterasi 5 :
f(3) = 4(2.00265)3 – 15(2.00265)2 + 17(2.00265) – 6 = 0.01334
f’(2.00265) = 12(2.00265)2 – 30(2.00265) + 17 = 5.04787
x5 = 2.00265 – 0.01334/5.04787 = 2.00001
iterasi 6 :
f(2.00001) = 4(2.00001)3 – 15(2.00001)2 + 17(2.00001) – 6 = 0.00006
f’(2.00001) = 12(2.00001)2 – 30(2.00001) + 17 = 5.00023
x6 = 2.00001 – 0.00006/5.00023 = 2.00000

iterasi 7 :
f(2) = 4(2)3 – 15(2)2 + 17(2) – 6 = 0


jika disajikan dalam tabel, maka seperti tabel dibawah ini.



karena pada iteasi ketujuh f(x6) = 0 maka akar dari persamaan tersebut adalah x = 2.


Atau contoh Soal 2 :

Hitung akar f(x)=e^x – 5x^2,
ε = 0.00001
x0 = 0.5

Penyelesaian
Sehingga iterasi Newton Raphson nya sebagai berikut:
Hasil setiap iterasi sebagai berikut:

Jadi, hampiran akarnya adalah x = 0.605267

ANALISIS KORELASI SEDERHANA

NAMA   : LM. RESKY JULIYANTO. S
NPM      : 15 630 040

ANALISIS KORELASI SEDERHANA

Analisis korelasi sederhana (Bivariate Correlation) digunakan untuk mengetahui keeratan hubungan antara dua variabel dan untuk mengetahui arah hubungan yang terjadi. Koefisien korelasi sederhana menunjukkan seberapa besar hubungan yang terjadi antara dua variabel. Dalam SPSS ada tiga metode korelasi sederhana (bivariate correlation) diantaranya Pearson Correlation, Kendall’s tau-b, dan Spearman Correlation. Pearson Correlation digunakan untuk data berskala interval atau rasio, sedangkan Kendall’s tau-b, dan Spearman Correlation lebih cocok untuk data berskala ordinal.
Pada bab ini akan dibahas analisis korelasi sederhana dengan metode Pearson atau sering disebut Product Moment Pearson. Nilai korelasi (r) berkisar antara 1 sampai -1, nilai semakin mendekati 1 atau -1 berarti hubungan antara dua variabel semakin kuat, sebaliknya nilai mendekati 0 berarti hubungan antara dua variabel semakin lemah. Nilai positif menunjukkan hubungan searah (X naik maka Y naik) dan nilai negatif menunjukkan hubungan terbalik (X naik maka Y turun).
Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:
0,00    -   0,199    = sangat rendah
0,20    -   0,399    = rendah
0,40    -   0,599    = sedang
0,60    -   0,799    = kuat
0,80    -   1,000    = sangat kuat 
 Contoh Kasus:
 ebuah penelitian terhadap pohon Mahoni, dimana akan diteliti apakah ada hubungan antara tinggi pohon dengan diameter batang pohon, dengan artian apakah ada pengaruh diameter batang pohon terhadap tinggi pohon tersebut.
Diambil sampel secara acak sejumlah delapan pohon mahoni.Dapat dilihat dari Tabel 1 pada kolom X dan Y.
Hal pertama yang akan kita lakukan adalah membentuk persamaan regresi, yaitu :
Y' = a + bX
Selanjutnya adalah menentukan konstanta a dan koefisien b, kita ikuti langkah sebagai berikut :
maka diperoleh :
Persamaan regresi diperoleh :
Y' = -1,3147 + 4,5413X
dimana :
Y' = Tinggi pohon mahoni yang diprediksi
X  = Diameter batang pohon mahoni
Interpretasi dari koefisien regresi :
  • Nilai a = -1,3147 artinya tidak ada diameter batang pohon maka tidak ada tinggi pohon. (karena tidak ada tinggi yang bernilai negatif sehingga dianggap nol).
  • Nilai b = 4,5413 artinya jika terjadi peningkatan diameter batang pohon mahoni satu satuan maka akan terjadi peningkatan tinggi pohon mahoni sebesar 4,5413 satuan.
Koefisien Determinasi R2 :
r = 0,886 bernilai positif dan kuat
artinya terdapat hubungan atau korelasi yang kuat antara tinggi pohon mahoni dengan diameter batang pohon mahoni. Semakin besar diameter batang pohon mahoni maka semakin tinggi batang pohon mahoni.
R= 0,886= 0,785
artinya sekitar 78,5% variasi dari variabel diameter batang pohon mahoni dapat menjelaskan variasi dari variabel tinggi pohon mahoni.
(cukup tinggi)
Standar Error Estimate Persamaan Regresi:
Jadi besarnya standar error estimate persamaan regresi adalah 6,6364. Hal ini menunjukkan penyimpangan data-data terhadap garis regresi, atau bagaimana penyimpangan data yang menyebar disekitar garis regresi.
(cukup kecil).
Pengujian Koefisien Regresi :

> Hipotesis Uji
Ho : b =  0
Ha : b ≠ 0
> Taraf Signifikansi
Pilih nilai signifikansi a = 5%

> Daerah Kritis
dengan nilai a = 5% dan derajat bebas n-2=8-2=6, maka diperoleh nilai t-tabel pada 5%/2 = 2,5% yaitu 2,447.
> Statistik Uji

> Keputusan
nilai t-hitung = 4,6805 > t-tabel = 2,447 sehingga Ho ditolak dan Ha diterima.
> Kesimpulan
Dengan tingkat signifikansi 5% cukup menjelaskan bahwa ada pengaruh diameter batang pohon mahoni terhadap tinggi pohon mahoni.

METODE ANALISIS REGRESI BERGANDA

NAMA   : LM. RESKY JULIYANTO. S
NPM      : 15 630 040
                                                METODE ANALISIS REGRESI BERGANDA

      Analisis regresi linier berganda adalah hubungan secara linear antara dua atau lebih variabel independen (X1, X2,….Xn) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah masing-masing variabel independen berhubungan positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan. Data yang digunakan biasanya berskala interval atau rasio.
            Persamaan regresi linear berganda sebagai berikut:

Y’ = a + b1X1+ b2X2+…..+ bnXn

Keterangan:
Y’                    =   Variabel dependen (nilai yang diprediksikan)
X1 dan X2      =   Variabel independen
a                      =   Konstanta (nilai Y’ apabila X1, X2…..Xn = 0)
b                            =    Koefisien regresi (nilai peningkatan ataupun penurunan)

Contoh kasus:
Kita mengambil contoh kasus pada uji normalitas, yaitu sebagai berikut: Seorang mahasiswa bernama Bambang melakukan penelitian tentang faktor-faktor yang mempengaruhi harga saham pada perusahaan di BEJ. Bambang dalam penelitiannya ingin mengetahui hubungan antara rasio keuangan PER dan ROI terhadap harga saham. Dengan ini Bambang menganalisis dengan bantuan program SPSS dengan alat analisis regresi linear berganda. Dari uraian di atas maka didapat variabel dependen (Y) adalah harga saham, sedangkan variabel independen (X1 dan X2) adalah PER dan ROI.
Data-data yang di dapat berupa data rasio dan ditabulasikan sebagai berikut:          
             
                     Tabel. Tabulasi Data (Data Fiktif)

Tahun Harga Saham (Rp) PER (%) ROI (%)
1990 8300 4.90 6.47
1991 7500 3.28 3.14
1992 8950 5.05 5.00
1993 8250 4.00 4.75
1994 9000 5.97 6.23
1995 8750 4.24 6.03
1996 10000 8.00 8.75
1997 8200 7.45 7.72
1998 8300 7.47 8.00
1999 10900 12.68 10.40
2000 12800 14.45 12.42
2001 9450 10.50 8.62
2002 13000 17.24 12.07
2003 8000 15.56 5.83
2004 6500 10.85 5.20
2005 9000 16.56 8.53
2006 7600 13.24 7.37
2007 10200 16.98 9.38

Langkah-langkah pada program SPSS
Ø  Masuk program SPSS
Ø  Klik variable view pada SPSS data editor
Ø  Pada kolom Name ketik y, kolom Name pada baris kedua ketik x1, kemudian untuk baris kedua ketik x2.
Ø  Pada kolom Label, untuk kolom pada baris pertama ketik Harga Saham, untuk kolom pada baris kedua ketik PER, kemudian pada baris ketiga ketik ROI.
Ø  Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø  Buka data view pada SPSS data editor, maka didapat kolom variabel y, x1, dan x2.
Ø  Ketikkan data sesuai dengan variabelnya
Ø  Klik Analyze  - Regression - Linear
Ø  Klik variabel Harga Saham dan masukkan ke kotak Dependent, kemudian klik variabel PER dan ROI kemudian masukkan ke kotak Independent.
Ø  Klik Statistics, klik Casewise diagnostics, klik All cases. Klik Continue
Ø  Klik OK, maka hasil output yang didapat pada kolom Coefficients dan Casewise diagnostics adalah sebagai berikut:

           Tabel. Hasil Analisis Regresi Linear Berganda




Persamaan regresinya sebagai berikut:

Y’ = a + b1X1+ b2X2
Y’ =  4662,491 + (-74,482)X1 + 692,107X2
Y’ =  4662,491 - 74,482X1 + 692,107X2

Keterangan:
Y’        = Harga saham yang diprediksi (Rp)
a          = konstanta
b1,b2    = koefisien regresi
X1        = PER (%)
X2        = ROI (%)

Persamaan regresi di atas dapat dijelaskan sebagai berikut:
- Konstanta sebesar 4662,491; artinya jika PER (X1) dan ROI (X2) nilainya adalah 0, maka harga saham (Y’) nilainya adalah Rp.4662,491.
-  Koefisien regresi variabel PER (X1) sebesar -74,482; artinya jika variabel independen lain nilainya tetap dan PER mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami penurunan sebesar Rp.74,482. Koefisien bernilai negatif artinya terjadi hubungan negatif antara PER dengan harga saham, semakin naik PER maka semakin turun harga saham.
-  Koefisien regresi variabel ROI (X2) sebesar 692,107; artinya jika variabel independen lain nilainya tetap dan ROI mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami peningkatan sebesar Rp.692,107. Koefisien bernilai positif artinya terjadi hubungan positif antara ROI dengan harga saham, semakin naik ROI maka semakin meningkat harga saham.

Nilai harga saham yang diprediksi (Y’) dapat dilihat pada tabel Casewise Diagnostics (kolom Predicted Value). Sedangkan Residual (unstandardized residual) adalah selisih antara harga saham dengan Predicted Value, dan Std. Residual (standardized residual) adalah nilai residual yang telah terstandarisasi (nilai semakin mendekati 0 maka model regresi semakin baik dalam melakukan prediksi, sebaliknya semakin menjauhi 0 atau lebih dari 1 atau -1 maka semakin tidak baik model regresi dalam melakukan prediksi).

A. Analisis Korelasi Ganda (R)
Analisis ini digunakan untuk mengetahui hubungan antara dua atau lebih variabel independen (X1, X2,…Xn) terhadap variabel dependen (Y) secara serentak. Koefisien ini menunjukkan seberapa besar hubungan yang terjadi antara variabel independen (X1, X2,……Xn) secara serentak terhadap variabel dependen (Y). nilai R berkisar antara 0 sampai 1, nilai semakin mendekati 1 berarti hubungan yang terjadi semakin kuat, sebaliknya nilai semakin mendekati 0 maka hubungan yang terjadi semakin lemah.
Menurut Sugiyono (2007) pedoman untuk memberikan interpretasi koefisien korelasi sebagai berikut:
0,00    -   0,199    = sangat rendah
0,20    -   0,399    = rendah
0,40    -   0,599    = sedang
0,60    -   0,799    = kuat
0,80    -   1,000    = sangat kuat

Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut:


                         Tabel. Hasil analisis korelasi ganda



Berdasarkan tabel di atas diperoleh angka R sebesar 0,879. Hal ini menunjukkan bahwa terjadi hubungan yang sangat kuat antara PER dan ROI terhadap harga saham.
B. Analisis Determinasi (R2)
Analisis determinasi dalam regresi linear berganda digunakan untuk mengetahui prosentase sumbangan pengaruh variabel independen (X1, X2,……Xn) secara serentak terhadap variabel dependen (Y). Koefisien ini menunjukkan seberapa besar prosentase variasi variabel independen yang digunakan dalam model mampu menjelaskan variasi variabel dependen. R2sama dengan 0, maka tidak ada sedikitpun prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen, atau variasi variabel independen yang digunakan dalam model tidak menjelaskan sedikitpun variasi variabel dependen. Sebaliknya R2 sama dengan 1, maka prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen adalah sempurna, atau variasi variabel independen yang digunakan dalam model menjelaskan 100% variasi variabel dependen.
Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut:

                      Tabel. Hasil analisis determinasi


Berdasarkan tabel di atas diperoleh angka R2 (R Square) sebesar 0,772 atau (77,2%). Hal ini menunjukkan bahwa prosentase sumbangan pengaruh variabel independen (PER dan ROI) terhadap variabel dependen (harga saham) sebesar 77,2%. Atau variasi variabel independen yang digunakan dalam model (PER dan ROI) mampu menjelaskan sebesar 77,2% variasi variabel dependen (harga saham). Sedangkan sisanya sebesar 22,8% dipengaruhi atau dijelaskan oleh variabel lain yang tidak dimasukkan dalam model penelitian ini.
Adjusted R Square adalah nilai R Square yang telah disesuaikan, nilai ini selalu lebih kecil dari R Square dan angka ini bisa memiliki harga negatif. Menurut Santoso (2001) bahwa untuk regresi dengan lebih dari dua variabel bebas digunakan Adjusted R2 sebagai koefisien determinasi.
Standard Error of the Estimate adalah suatu ukuran banyaknya kesalahan model regresi dalam memprediksikan nilai Y. Dari hasil regresi di dapat nilai 870,80 atau Rp.870,80 (satuan harga saham), hal ini berarti banyaknya kesalahan dalam prediksi harga saham sebesar Rp.870,80. Sebagai pedoman jika Standard error of the estimate kurang dari standar deviasi Y, maka model regresi semakin baik dalam memprediksi nilai Y.


C. Uji Koefisien Regresi Secara Bersama-sama (Uji F)
Uji ini digunakan untuk mengetahui apakah variabel independen (X1,X2….Xn) secara bersama-sama berpengaruh secara signifikan terhadap variabel dependen (Y). Atau untuk mengetahui apakah model regresi dapat digunakan untuk memprediksi variabel dependen atau tidak. Signifikan berarti hubungan yang terjadi dapat berlaku untuk populasi (dapat digeneralisasikan), misalnya dari kasus di atas populasinya adalah 50 perusahaan dan sampel yang diambil dari kasus di atas 18 perusahaan, jadi apakah pengaruh yang terjadi atau kesimpulan yang didapat berlaku untuk populasi yang berjumlah 50 perusahaan.
Dari hasil output analisis regresi dapat diketahui nilai F seperti pada tabel 2 berikut ini.

                                                     Tabel.  Hasil Uji F



Tahap-tahap untuk melakukan uji F adalah sebagai berikut:
1.   Merumuskan Hipotesis
Ho : Tidak ada pengaruh secara signifikan antara PER dan ROI secara bersama-sama terhadap harga saham.
Ha : Ada pengaruh secara signifikan antara PER dan ROI secara bersama-sama terhadap harga saham.
2.   Menentukan tingkat signifikansi
Tingkat signifikansi menggunakan a = 5% (signifikansi 5% atau 0,05 adalah ukuran standar yang sering digunakan dalam penelitian)
      3.   Menentukan F hitung
Berdasarkan tabel  diperoleh F hitung sebesar 25,465
4.      Menentukan F tabel
Dengan menggunakan tingkat keyakinan 95%, a = 5%, df 1 (jumlah variabel–1)  = 2, dan df 2 (n-k-1) atau 18-2-1  = 15 (n adalah jumlah kasus dan k adalah jumlah variabel independen), hasil diperoleh untuk F tabel sebesar 3,683 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =finv(0.05,2,15) lalu enter.
5.      Kriteria pengujian
- Ho diterima bila F hitung < F tabel
- Ho ditolak bila F hitung > F tabel
6.  Membandingkan F hitung dengan F tabel.

            Nilai F hitung > F tabel (25,465 > 3,683), maka Ho ditolak.
7.  Kesimpulan
            Karena F hitung > F tabel (25,465 > 3,683), maka Ho ditolak, artinya ada pengaruh secara signifikan antara  price earning ratio (PER) dan return on investmen (ROI) secara bersama-sama terhadap terhadap harga saham. Jadi dari kasus ini dapat disimpulkan bahwa PER dan ROI secara bersama-sama berpengaruh terhadap harga saham pada perusahaan di BEJ.

D. Uji Koefisien Regresi Secara Parsial (Uji t)
Uji ini digunakan untuk mengetahui apakah dalam model regresi variabel independen (X1, X2,…..Xn) secara parsial berpengaruh signifikan terhadap variabel dependen (Y).
Dari hasil analisis regresi output dapat disajikan sebagai berikut:

                                       Tabel. Uji t



Langkah-langkah pengujian sebagai berikut:

Pengujian koefisien regresi variabel PER
1.   Menentukan Hipotesis
Ho : Secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham.
Ha : Secara parsial ada pengaruh signifikan antara PER dengan harga saham

2.   Menentukan tingkat signifikansi
            Tingkat signifikansi menggunakan a = 5%

      3.   Menentukan t hitung
Berdasarkan tabel  diperoleh t hitung sebesar -1,259
4.   Menentukan t tabel
Tabel distribusi t dicari pada a = 5% : 2 = 2,5% (uji 2 sisi) dengan derajat kebebasan (df) n-k-1 atau  18-2-1  = 15 (n adalah jumlah kasus dan k adalah jumlah variabel independen). Dengan pengujian 2 sisi (signifikansi           = 0,025) hasil diperoleh untuk t tabel sebesar 2,131 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =tinv(0.05,15) lalu enter.
5.   Kriteria Pengujian
Ho diterima jika -t tabel < t hitung < t tabel
            Ho ditolak jika -t hitung < -t tabel atau t hitung > t tabel
6.   Membandingkan thitung dengan t tabel
Nilai -t hitung > -t tabel (-1,259 > -2,131) maka Ho diterima
 7.  Kesimpulan
Oleh karena nilai -t hitung > -t tabel (-1,259 > -2,131) maka Ho diterima, artinya secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham. Jadi dari kasus ini dapat disimpulkan bahwa secara parsial PER tidak berpengaruh terhadap harga saham pada perusahaan di BEJ.

Pengujian koefisien regresi variabel ROI
1.   Menentukan Hipotesis
            Ho : Secara parsial tidak ada pengaruh signifikan antara ROI dengan harga saham
Ha :    Secara parsial ada pengaruh signifikan antara ROI dengan harga saham
2.   Menentukan tingkat signifikansi
            Tingkat signifikansi menggunakan a = 5%.
      3.   Menentukan t hitung
Berdasarkan tabel  diperoleh t hitung sebesar 5,964
   
 4.   Menentukan t tabel
Tabel distribusi t dicari pada a = 5% : 2 = 2,5% (uji 2 sisi) dengan derajat kebebasan (df) n-k-1 atau  18-2-1  = 15 (n adalah jumlah kasus dan k adalah jumlah variabel independen). Dengan pengujian 2 sisi (signifikansi           = 0,025) hasil diperoleh untuk t tabel sebesar 2,131.
5.   Kriteria Pengujian
Ho diterima jika -t tabel £ t hitung £ t tabel
            Ho ditolak jika -t hitung < -t tabel atau t hitung > t tabel
6.   Membandingkan thitung dengan t tabel
Nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak
 7.  Kesimpulan
Oleh karena nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak, artinya secara parsial ada pengaruh signifikan antara ROI dengan harga saham. Jadi dari kasus ini dapat disimpulkan bahwa secara parsial ROI berpengaruh positif terhadap harga saham pada perusahaan di BEJ.

METODE BEDA HINGGA

NAMA : LM. RESKY JULIYANTO. S
NPM.      : 15 630 040


                                                           METODE BEDA HINGGA

Salah satu cara utk menyelesaikan persamaan differential adalah dengan menggunakan metode beda hingga atau yg lbh dikenal dgn finite difference method. Metode ini menggunakan pendekatan ekspansi Taylor di titik acuannya (x). Ada tiga jenis beda (difference) yg bisa kita gunakan utk mencari nilai f(x+∆x). Ketiga jenis beda ini disebut forward difference, backward difference, dan central difference. Supaya gak lupa, penurunannya saya berikan di sini.
Forward difference
Utk forward difference, kita ingin mencari nilai suatu fungsi jika independent variablenya digeser ke depan (makanya namanya forward difference) sebesar ∆x. Sederhananya, jika kita tahu f(x), maka berapakah f(x+∆x)? Ekspansi Taylor dituliskan sbb:

Secara umum, symbol ∂f/∂x*∆x menunjukkan kemiringan (gradient) nilai fungsi f pada f(x) jika x digeser sebesar ∆x. Sementara symbol ∂2f/∂x2 menunjukkan lengkungan (curvature) dari titik f(x) tsb jika x digeser sebesar ∆x.
Oleh karena nilai setelah term pertama di atas tidak signifikan dibandingkan dgn term kedua, maka bisa kita bilang klo:

Hubungan di atas menunjukkan kemiringan (gradient) dari fungsi tsb sebesar ∆x ke depan (lbh besar dari x).

Backward difference
Pertanyaan yg sama jg kita berikan utk backward difference. Jika kita tahu f(x), maka berapakah f(x-∆x)? Atau berapakah nilai fungsi tsb jika independent variablenya digeser ke belakang sebesar ∆x. Ekspansi Taylor dituliskan sbb:

Hubungan terakhir ini menunjukkan kemiringan (gradient) dari fungsi tsb sebesar ∆x ke belakang (lbh kecil dari x).

Central difference
Jenis bedar ketiga adalah beda tengah, di mana kita akan mencari kemiringan dari fungsi tsb dgn menggunakan perbedaan nilai fungsinya dari beda depan dan beda belakang. Secara matematis, beda tengah adalah penjumlahan dari beda depan dan beda belakang.


Second order derivation
Setelah pendekatan orde satu bisa kita turunkan spt di atas, skrg kita bisa menurunkan persamaan utk pendekatan orde dua. Penurunan di bawah ini saya mulai dari mengambil persamaan orde satu dari beda depan (forward difference) yg mengandung penurunan orde dua (second order differential). Fungsi ∂2f/∂x2saya keluarkan, dan persamaan utk ∂f/∂x nya saya ambil dari pendekatan beda belakang (backward difference).


Dengan adanya dua pendekatan (orde satu dan orde dua) ini, kita bisa bekerja dgn contoh berikut:

Penyelesaian analitiknya adalah sbb:

Kondisi batas yg kita ketahui adalah sbb:
u pada r = 2 atau u(2) = 0.008
u(6.5) = 0.003
Yg ditanyakan adalah berapa nilai u di antara kedua nilai batas di atas.

Dengan metode beda hingga ini, kita akan membuat node2. Katakanlah kita buat 4 node. Node yg pertama adalah saat u(2), dan node yg keempat adalah u(6.5). 4 node yg kita pilih terdiri atas 3 rentang, yakni rentang node 1-2, rentang node 2-3, dan rentang node 3-4. Jarak rentang tsb adalah (6.5-2)/3 = 1.5. Maka, node 2 adalah 2+1.5 = 3.5. Node 3 adalah 3.5+1.5 =5. Yg skrg ingin kita ketahui tentunya adalah nilai u pada saat r = 3.5 atau u(3.5) dan u(5).
Utk yg pertama ini, kita akan gunakan pendekatan beda maju utk orde satu. Dengan memasukkan pendekatan yg udah kita turunkan ke persamaan diferensial di atas, kita dapat:
 , dgn i = node.

Persamaan ini kita utak-atik utk mendapatkan penyelesaian utk ui, sehingga kita bisa menyusun persamaan utk u2 dan u3. Sementara u1 dan u4 sudah kita ketahui sebagai kondisi batas. Klo saya selesaikan di excel, akan didapat sbb:

Perbandingan hasil pendekatan ini dengan hasil analitiknya menghasilkan error sebesar 6.66% utk u2 atau u(3.5) dan error sebesar 5.12% utk u3 atau u(5).
Jika saya gunakan beda tengah utk pendekatan orde satu, akan diperoleh hasil sbb:

Hasil perhitungan dgn pendekatan beda tengah ternyata lbh akurat drpd pendekatan beda maju (dan jg drpd beda mundur). Error utk u(3.5) menjadi 2.43% dan error utk u(5) menjadi 1.68%.
Jika saya menggunakan node yg lbh banyak, dalam artian saya melakukan perhitungan yg lbh detail, dengan 8 node misalnya. Dan tetap menggunakan beda tengah, akan didapat hasil sbb:

Spt yg diharapkan klo hasil perhitungan dgn node yg semakin banyak atau perhitungan semakin detail, maka hasilnya akan mendekati hasil analitiknya. Error yg diperoleh utk setiap r di atas semuanya di bawah 0.5%.

ANALISIS REGRESI SEDERHANA

Nama       : LM. RESKY JULIYANTO. S 
NPM         : 15 630 040
ANALISIS REGRESI SEDERHANA
Analisis regresi sederhana merupakan analisis ketergantungan dari satu atau lebih variabel bebas terhadap satu variabel tergantung, dengan tujuan untuk menduga atau memprediksi nilai rata-rata populasi berdasarkan niali-nilai variabel bebasnya.
Perbedaan mendasar antara analisis korelasi dengan analisis regresi adalah bahwa analisis korelasi hanya bertujuan untuk mengukur kekuatan hubungan linier antar dua variabel, sehingga pada analisis korelasi tidak membedakan antara variabel bebas dengan variabel tergantung. Sedangkan analisis regresi selain mengukur kekuatan hubungan antar dua variabel atau lebih, analisis regresi juga digunakan untuk menetukan aarah hubungan antara variabel bebas dengan variabel tergantungnya. Berikut ini adalah istilah lain dari variabel bebas dan variabel tergantung.
·         Variabel yang Dipengaruhi (Y) : variabel tergantung/terikat (Dependent Variable), variabel yang dijelaskan (Expalined variable); variabel yang diramalkan (Predictand variable); variable yang diregresi (Regressand variable); Variabel tanggapan (Response variable).
·         Variabel yang Memengaruhi (X) : variabel bebas (Dependent variable); variabel yang menjelaskan (Explanatory variable); variabel peramal (Predictor variable); variabel yang meregresi (Regressor variable); variabel perangsang atau kendali (Stimulus or Control variable).
Analisis regresi tidak boleh digunakan untuk menguji hubungan bersifat identitas. Hubungan identitas merupakan bentuk hubungan yang bukan disebabkan oleh adanya fenomena sebab-akibat tetapi disebabkan oleh sebuah persamaan yang telah dibentuk (seperti produktifitas dengan hasil produksi, upah yang diterima dengan hasil produksi). Berkaitan dengan analisis regresi ini setidaknya ada empat kegiatan yang dapat dilaksanakan dalam analisis regresi:
·         Mengadakan estimasi terhadap parameter berdasarkan data empiris
·         Menguji berapa besar variasi variasi variabel dependent dapat diterangkan oleh variasi variabel independent
·         Menguji apakah estimasi parameter tersebut signifikan atau tidak dan
·         Melihat apakah tanda dan magnitud dari estimasi parameter cocok dengan teori
Model Regresi Sederhana
Regresi sederhana digunakan unuk menganalisis hubungan kausal satu variabel bebas terhadap satu variabel tergantung. Model yang digunakan untuk analisis regresi sederhana adalah:
Y = a + bX + ε
·         Y = nilai yang diramalkan
·         a  = konstanta/intercept
·         b  = koefisien regresi/slope
·         X = variabel bebas
·         ε  = nilai residu
Dalam analsis regresi menggunakan SPSS ada beberapa hal yang dianalisis sebagai dasar untuk melakukan analisis lebih mendalam dari sekedar persamaan regresi yang terbentuk, diantaranya:
1.    Persamaan Regresi, menggambarkan model hubungan antar variabel bebas dengan variabel yang terikatnya (yang diramalkan). Persamaan ini tersusun dari nilai konstanta/intercept (a) dan nilai koefisien regresi/slope (b) variabel bebasnya
2.    Nilai prediksi, merupakan besar nilai variabel terikat ( Ŷ ) yang diperoleh dari prediksi dengan menggunakan persamaan regresi yang terbentuk.
3.    Koefisien Determinasi (R), merupakan besarnya kontribusi variabel bebas terhadap variabel terikat, yang nilainya semakin tinggi maka semakin tinggi variabel bebas menjelaskan variasi perubahan pada variabel terikatnya.
4.    Kesalahan Baku Estimasi, merupakan satuan yang digunakan untuk menentukan besarnya tinggkat penyimpangan dari persamaan yang terbentuk dengan nilai senyatanya. Semakin tinggi kesalahan baku estimasi maka semakin lemah persamaan regresi tersebut untuk digunakan sebagai alat proyeksi
5.    Kesalahn Baku Koefisien Regresi, meerupakan satuan yang digunakan untuk menunjukkan tingkat penyimpangan dari masing-masing koefisien regresi. Semakin tinggi kesalahan baku koefisien regresi maka semakin lemah variabel tersebut untuk diikutkan dalam model persamaan regresi (semakin tidak berpengaruh).
6.    Nilai F hitung, digunakan untuk menguji model persamaan regresi fit (cocok) atau tidak dari pengaruh secara simultan variabel bebasnya terhadap varibel terikatnya.
7.    Nilai t hitung, digunakan untuk menguji secara parsial (per variabel) terhadap variabel terikatnya.
Sebuah penelitian terhadap pohon Mahoni, dimana akan diteliti apakah ada hubungan antara tinggi pohon dengan diameter batang pohon, dengan artian apakah ada pengaruh diameter batang pohon terhadap tinggi pohon tersebut.
Diambil sampel secara acak sejumlah delapan pohon mahoni.Dapat dilihat dari Tabel 1 pada kolom X dan Y. Hal pertama yang akan kita lakukan adalah membentuk persamaan regresi, yaitu :
Y' = a + bX
Selanjutnya adalah menentukan konstanta a dan koefisien b, kita ikuti langkah sebagai berikut :
Tinggi pohon
Diameter batang
xy
Y2
X2
y
x
35
8
280
1225
64
49
9
441
2401
81
27
7
189
729
49
33
6
198
1089
36
60
13
780
3600
169
21
7
147
441
49
45
11
495
2025
121
51
12
612
2601
144
Σ=321
Σ=73
Σ=3142
Σ=14111
Σ=713
maka diperoleh :
ᵅ (321 x 713) – (73 x 3142)
      ( 8 x 713 )  ̶  732
= -1,3147
ᵇ (8 x 3142) – (73 x 321)
      ( 8 x 713 )  ̶  732
= 4,5413
Persamaan regresi diperoleh :
Y' = -1,3147 + 4,5413X
dimana :
Y' = Tinggi pohon mahoni yang diprediksi
X  = Diameter batang pohon mahoni
Interpretasi dari koefisien regresi :
·         Nilai a = -1,3147 artinya tidak ada diameter batang pohon maka tidak ada tinggi pohon. (karena tidak ada tinggi yang bernilai negatif sehingga dianggap nol).
·         Nilai b = 4,5413 artinya jika terjadi peningkatan diameter batang pohon mahoni satu satuan maka akan terjadi peningkatan tinggi pohon mahoni sebesar 4,5413 satuan.
Koefisien Determinasi R2 :
  https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj4EkvWAxIe3nkICk-QPstKjpXER1tmGA4o8jSLQ3ASq52l-jnaUZEzjtGKvt7yTBR65VbYpS5_Pxkt1l7M_AQov_4wS1pISTUXYflf4LJZga_qkQgM800d12ww6crBvDIt1Ra722hVjWkS/s1600/r.png
r = 0,886 bernilai positif dan kuat
artinya terdapat hubungan atau korelasi yang kuat antara tinggi pohon mahoni dengan diameter batang pohon mahoni. Semakin besar diameter batang pohon mahoni maka semakin tinggi batang pohon mahoni.
R= 0,886= 0,785
artinya sekitar 78,5% variasi dari variabel diameter batang pohon mahoni dapat menjelaskan variasi dari variabel tinggi pohon mahoni.
(cukup tinggi)
Standar Error Estimate Persamaan Regresi:
S=  √ Σy - Σy – b Σxy / n – 2
     = √14111 – ((-1,3147) x 321) – (4,5413 x 3142)/8 – 2
     = 6,6364
           
Jadi besarnya standar error estimate persamaan regresi adalah 6,6364. Hal ini menunjukkan penyimpangan data-data terhadap garis regresi, atau bagaimana penyimpangan data yang menyebar disekitar garis regresi. (cukup kecil).
Pengujian Koefisien Regresi :
> Hipotesis Uji
Ho : b =  0
Ha : b ≠ 0
> Taraf Signifikansi
Pilih nilai signifikansi a = 5%
> Daerah Kritis
dengan nilai a = 5% dan derajat bebas n-2=8-2=6, maka diperoleh nilai t-tabel pada 5%/2 = 2,5% yaitu 2,447.
> Statistik Uji
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgy3msXnmZGasrqx1YcPZU9_ub7FZa2oIXyYjHvf1vFsccmdg4GjO9H8rgigpwqJFFsBaw5g3qZlQUJepXCDjIOPngKWlzmbRIYoXl3PjpZtEIJInLt3ty-F18S3NC6AhAqdb8KI0ZiTGJJ/s1600/t-hitung+ex.png
> Keputusan
nilai t-hitung = 4,6805 > t-tabel = 2,447 sehingga Ho ditolak dan Ha diterima.
> Kesimpulan
Dengan tingkat signifikansi 5% cukup menjelaskan bahwa ada pengaruh diameter batang pohon mahoni terhadap tinggi pohon mahoni.